For centuries, humans have been expanding their understanding of the world through more and more precise measurement of light and matter. Today, quantum sensors achieve extremely accurate results. An example of this is the development of atomic clocks, which are expected to neither gain nor lose more than a second in thirty billion years. Gravitational waves were detected via quantum sensors as well, in this case by using optical interferometers.
Quantum sensors can reach sensitivities that are impossible according to the laws of conventional physics that govern everyday life. Those levels of sensitivity can only be reached if one enters the world of quantum mechanics with its fascinating properties – such as the phenomenon of superposition, where objects can be in two places at once and where an atom can have two different energy levels at the same time.
Source: Die Grenzen der Messgenauigkeit verschieben – Leibniz Universität Hannover